414 research outputs found

    Tunable Negative Differential Resistance controlled by Spin Blockade in Single Electron Transistors

    Full text link
    We demonstrate a tunable negative differential resistance controlled by spin blockade in single electron transistors. The single electron transistors containing a few electrons and spin polarized source and drain contacts were formed in GaAs/GaAlAs heterojunctions using metallic gates. Coulomb blockade measurements performed as a function of applied source-drain bias, electron number and magnetic field reveal well defined regimes where a decrease in the current is observed with increasing bias. We establish that the origin of the negative differential regime is the spin-polarized detection of electrons combined with a long spin relaxation time in the dot. These results indicate new functionalities that may be utilized in nano-spintronic devices in which the spin state is electro-statically controlled via the electron occupation number.Comment: 8 pages, 4 figure

    The Collapse of the Spin-Singlet Phase in Quantum Dots

    Full text link
    We present experimental and theoretical results on a new regime in quantum dots in which the filling factor 2 singlet state is replaced by new spin polarized phases. We make use of spin blockade spectroscopy to identify the transition to this new regime as a function of the number of electrons. The key experimental observation is a reversal of the phase in the systematic oscillation of the amplitude of Coulomb blockade peaks as the number of electrons is increased above a critical number. It is found theoretically that correlations are crucial to the existence of the new phases.Comment: REVTeX4, 4 pages, 4 figures, to appear in PR

    X-stream inclusion

    Get PDF

    Electron spin manipulation and resonator readout in a double quantum dot nano-electromechanical system

    Full text link
    Magnetically coupling a nano-mechanical resonator to a double quantum dot confining two electrons can enable the manipulation of a single electron spin and the readout of the resonator's natural frequency. When the Larmor frequency matches the resonator frequency, the electron spin in one of the dots can be selectively flipped by the magnetised resonator. By simultaneously measuring the charge state of the two-electron double quantum dots, this transition can be detected thus enabling the natural frequency of the mechanical resonator to be determined.Comment: 7 pages, fixed typos, updated figures 4 and

    Telegraph Noise in Coupled Quantum Dot Circuits Induced by a Quantum Point Contact

    Full text link
    Charge detection utilizing a highly biased quantum point contact has become the most effective probe for studying few electron quantum dot circuits. Measurements on double and triple quantum dot circuits is performed to clarify a back action role of charge sensing on the confined electrons. The quantum point contact triggers inelastic transitions, which occur quite generally. Under specific device and measurement conditions these transitions manifest themselves as bounded regimes of telegraph noise within a stability diagram. A nonequilibrium transition from artificial atomic to molecular behavior is identified. Consequences for quantum information applications are discussed.Comment: 4 pages, 3 figures (as published

    Spin-blockade spectroscopy of a two-level artificial molecule

    Full text link
    Coulomb and spin blockade spectroscopy investigations have been performed on an electrostatically defined ``artificial molecule'' connected to spin polarized leads. The molecule is first effectively reduced to a two-level system by placing both constituent atoms at a specific location of the level spectrum. The spin sensitivity of the conductance enables us to identify the electronic spin-states of the two-level molecule. We find in addition that the magnetic field induces variations in the tunnel coupling between the two atoms. The lateral nature of the device is evoked to explain this behavior.Comment: 4 pages, 4 figures; revised version with a minor change in Fig.2 and additional inset in Fig.3.;accepted by PR

    Coherent Manipulation of Individual Electron Spin in a Double Quantum Dot Integrated with a Micro-Magnet

    Full text link
    We report the coherent manipulation of electron spins in a double quantum dot integrated with a micro-magnet. We performed electric dipole spin resonance experiments in the continuous wave (CW) and pump-and-probe modes. We observed two resonant CW peaks and two Rabi oscillations of the quantum dot current by sweeping an external magnetic field at a fixed frequency. Two peaks and oscillations are measured at different resonant magnetic field, which reflects the fact that the local magnetic fields at each quantum dot are modulated by the stray field of a micro-magnet. As predicted with a density matrix approach, the CW current is quadratic with respect to microwave (MW) voltage while the Rabi frequency (\nu_Rabi) is linear. The difference between the \nu_Rabi values of two Rabi oscillations directly reflects the MW electric field across the two dots. These results show that the spins on each dot can be manipulated coherently at will by tuning the micro-magnet alignment and MW electric field.Comment: 5 pages, 3 figure

    The influence of the long-lived quantum Hall potential on the characteristics of quantum devices

    Full text link
    Novel hysteretic effects are reported in magneto-transport experiments on lateral quantum devices. The effects are characterized by two vastly different relaxation times (minutes and days). It is shown that the observed phenomena are related to long-lived eddy currents. This is confirmed by torsion-balance magnetometry measurements of the same 2-dimensional electron gas (2DEG) material. These observations show that the induced quantum Hall potential at the edges of the 2DEG reservoirs influences transport through the devices, and have important consequences for the magneto-transport of all lateral quantum devices.Comment: 5 pages, 4 figure
    • …
    corecore